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A general characteristic of rapidly rotating fluids is that accurate experimental 
measurements can only be made of the main (azimuthal) flow. The secondary 
flow is then usually deduced from theory, although this is often incomplehe in 
t,he boundary regions where the secondary flow is of most interest. 

In  this paper we consider the case of source-sink flow between the porous 
walls of a rapidly rotating annular container and numerical13 integrate the fill1 
equations of motion in order to determine the complete structure of the secondary 
flow. The results are compared with the (approximate) analytic studies of Hide 
(1968) and Bennetts & Hocking (1973) to show the differences between the two 
approaches. 

A defect of many previous numerical papers has been the inability to check 
the solution in the nonlinear case. To overcome this, new experimental measure- 
ments of the azimuthal velocity profile for a Rossby number of 0.238 have been 
obtained and these are compared with the numerical results. 

I.  Introduction 
This paper is concerned with the motions produced. in a rotating annular 

container when the inner wall acts as a uniform radial source and the outer wall 
as a sink. The general properties of such a system have been discussed by Hide 
(1968) and here we look especially a t  the secondary flow in the boundary-layer 
regions. This has been investigated by numerical integration of the Navier- 
Stokes equations. 

The non-dimensionalized equations of motion for an incompressible homo- 
geneous fluid moving with velocity Vu relative to a uniform rotation Qk are 

au/&+ R(u.V) U +  k x u = - V#+ EV2u, (1.1) 

v . u  = 0, (1.2) 

where V is the maximum azimuthal velocity, q5 = p/2hQV ( p  being the specific 
volume multiplied by a modified pressure which includes the centrifugal terms), 
T ( =  2Qt)  is a modified time and h is the height of the container. The two para- 
meters E and R are defined by 

E = V/2Qh2, R = V/2Qh, (1.3) 
F L M  66 44 
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where 11 is the coefficient of kinematic viscosity. We also find it useful to define 
one further parameter, C, to measure the curvature of the annulus. 

C = 2(b - a)/(b +a) ,  

where a and b are the inner and outer radii respectively. 
Motions in rapidly rotating fluids ale characterized by values of E and R 

that are very much less than unity. I n  these cases the flow in the main body of 
the fluid can a t  most times only be determined by matching through the boundary 
layers which form on the walls of the container. The technique for dealing with 
these boundary layers is well established when one of the small parameters is 
multiplied by the most highly differentiated term, but there is no general 
method for other cases. Fortunately, however, there is usually some parametric 
region where one parameter is more important than the others and this gives 
us a basis from which to start a full analysis. 

The equations can be solved analytically if the inertial terms are neglected, 
and an elementary scale analysis indicates that this can be done with negligible 
errors if R < Ei  < 1. This is called the linear case and in the st,eady state fluid 
moves towards the outer cylinder entirely within Ekman layers on the top and 
bottom boundaries. It flows along the inner cylinder wall towards the Ekman 
layers in Stewartson layers of thickness O(Ei) ,  with substructure on a scale E*, 
and leaves the Ekman layers to move along the outer cylinder wall in similar 
layers. This motion produces an azimuthal circulation in the geostrophic interior 
which is in the opposite sense to the rotation, although of course much smaller. 
For a fuller description of the flow see Hide (1968). If, however, 1 R Ei,  
errors O(1) are present in the regions of high radial shear, and the inertial terms 
are no longer negligible. This is the nonlinear case. 

Recent papers by Hide (1968), Barcilon (1970) and Bennetts & Hocking (1973) 
find that in the nonlinear case the boundary layer on the source thickens from 
O(Ei)  to O ( R )  while the sink layer thins to O(R-lE*). Hide used an assumed 
form of the velocity distribution in the layer in reaching these conclusions and 
then derived an approximate formula for the thickness of the two layers. He 
also compared his estimates of the azimuthal circulation in both the side-wall 
layers and the interior with experimental results and obtained good agreement. 
Barcilon (1970) obtained the main features of the flow in the two layers by 
deriving an approximate analytic expression for the solution of the governing 
equation. Both these methods used the linear Ekman condition throughout. 
The third paper, Bennetts & Hocking (1973), derives the nonlinear Ekman 
condition under the assumption that the flow in the Ekman layer has a local 
similarity form. 

The concensus of these three papers is that on the source there is an inertial 
layer of thickness O(R) in which the fluid emerging from the cylinder retains its 
angular momentum, thus preventing centrifugal instability. In  this layer the 
fluid is sucked into the Ekman layers at the top and bottom and the inward 
momentum of the fluid outside the Ekman layers has been lost in a distance 
0-68R (Bennetts & Hocking 1973) from the wall. At this point the fluid still has 
a discontinuity in the gradient of the radial velocity which is smoothed out by 
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a viscous shear layer. There is then a second region of thickness O ( R )  in which 
the azimuthal velocity is adjusted by the influence of the Ekman layers until the 
interior geostrophic value is reached. 

On the sink boundary the change is quite different. Here the layer remains 
dominated by viscosity, but is thinner than in linear theory, being of thickness 
O(R-lE4). Fluid is injected from the Ekman layers a t  the top and bottom boun- 
daries and redistributed uniformly over the sink, a t  the same time gaining 
angular momentum to match the boundary. For very small R this process is 
controlled by the Ekman layers via geostrophic and viscous forces, but as R 
increases the Ekman layers only control the outer part of the sink layer, and 
the inner part, nearest the wall, is more dependent on matching the no-slip 
condition, via viscous and inertial forces, than in redistributing the fluid; see 
Hamel (1916). Bennetts & Hocking also found that there was a lower limit to 
the thickness of this layer a t  R = 1*34(2E)%, in the present notation. They 
suggested that this limit was imposed by mathematical difficulties encountered 
in the solution of their equations rather than by more fundamental physical 
reasons, and the present numerical results confirm that there is indeed a solution 
when R > 1*34(2E)*. 

I n  the present paper numerical methods permit us to use the full equations 
of motion and the Ekman-layer suction is then evaluated directly, not para- 
meterized as in the above papers. The numerical calculation was performed with 
the following parameters, which allow comparison with the experimental measure- 
ments: 

b = 11.76 em, 
(1.4) I a = 5.06 em, h = 5-00 em, 

!J = 0.25 rad s-l, v = 0.0100 em2 s-l. 

These are used throughout except for two cases: in $3, when a comparison is 
made with Hide's solution in the linear case, and in $ 4 when the present numerical 
results and previous analytic solutions are compared. In  both these cases we put 

a = 1005.06 em, b = 1011.67 em, (1.5) 

thus making curvature effects negligible. 
The range of the investigation is 0 < R < 0.4. Above this the source layer fills 

much of the container and begins to affect the sink. The higher values of Q 
necessary to prevent this (the source-layer thickness is inversely proportional 
to Q) could not be achieved because of computer limitations on time, and the 
gap width could not be increased appreciably because of limitations in space. 

The results of the integrat'ion are compared with linear theory in $3. Direct 
comparison is difficult owing to the different requirements for E, linear theory 
requiring it to be infinitesimally small and the numerical model requiring a 
boundary layer of finite size. However the comparison sheds some light on the 
boundary layers and provides a basis for studying the curvature effects. In  $4 
the Rossby number is increased to 3 x and the appearance of the inertial 
terms is noted in the boundary-layer regions. A further increase to about 3 x 10-l 
then allows the structure of the thick inertial layer on the source and the thin 

44-2 
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viscous-dominated layer on the sink to be seen. Similar behaviour of the boundary 
layers has been noted by Dunst (1972) in his investigation of angular-momentum 
exchanges in rotating fluids. 

2. The numerical model 
We define velocity components ( U ,  V ,  W )  with respect to cylindrical polar co- 

ordinates (r ,  8, z )  fixed in the rotating frame of reference. The pressure can then 
be eliminated from the Navier-Stokes equations and the equations governing 
the axisymmetric flow become 

(2.2) 

(3.3) 

where q9 is the stream function in the plane 8 = constant and is defined by 

U = - r-l a+/&, TB = r-l afi/ar. (2.4) 

6 is the vorticity aU/az - a W/ar. 
Inspection of the above equations shows that the integration need only be 

performed over half the container, the flow being symmetric about the mid- 
height, and the origin is chosen so that 

a < r < b ,  O > z >  -4h. ( 2 . 5 )  

+ = (&/2nh)f( -$h), V = 0 a t  x = -4h, (2.6) 

+ = (&/27rh)f(z), V = 0 a t  r = a, b, (2.7) 

The boundary conditions for q9 and V are then 

where Q is the total volume of fluid passing through the container per second. 
Some discussion is however required to explainf(z). Over much of the boundary 
r = a, b, f ( x )  = z ,  giving a constant radial inflow, but near the corner regions it 
must be modified so that the no-slip condition on the top and bottom boundaries 
is satisfied. Ideally we should like to let the pressure distribution on the vertical 
boundaries determine f ( z )  for us but this introduces severe numerical stability 
problems and we are forced to specify the function initially. By trial and error a 
good function was found to be 

(2.8) f (z )  = x + E* exp { - E-&(z + &)). 

This function was chosen as it gave a simple pattern of streamlines in the 
corner regions. Although there is no physical evidence to support this choice, 
some justification is obtained by considering the two extreme cases a2flaz2 < S 
and azf/ax2 >> 8, where X is the expression for azf/ax2 obtained from (2.8). The 
details of the streamlines in hhese two cases are illustrated in figures 1 (a )  and ( 6 )  
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FIGURE 1. Sketches of the streamlines in the corner region (inflow wall) when (a) 
a2flaz2 < S and ( b )  azflaz2 9 "5'. This pattern is preserved for the whole range of R and 
the disturbance was confined to a region approximately E* by E3. 

respectively. It was found that these patterns were preserved throughout the 
range of R and that the disturbance resulting from P f / l a x 2  =+ S was confined to 
a region approximately E )  by Ei.  

Finally, we require the boundary conditions for ( at the walls. These can be 
obtained by reversing t,he role of the Poisson equation, after Pearson (1  965), 
which allows the introduction of the no-slip condition directly into the system. 
Pearson's formulae need to be modified slightly to account for the flow normal 
to the inner and outer walls, especially in the corner regions, but the change is 
straightforward and not presented here. The last boundary condition is that on 
( at z = 0 and by symmetry this is 

( = 0  at z = O .  (2.9) 

Finite-difference scheme 

For a numerical solution of the (2.1) and (2.3) it is necessary to replace the con- 
tinuous derivatives by their finite-difference analogues. The variables $, ( and 
V are stored a t  uniformly spaced grid points in the plane 0 = constant such that 
there are L spaces of length Ar  and Jl of length AZ at  times nAt, where L, M and 
n are integers. L and M are then chosen by ensuring that the continuous deriva- 
tives and their finite-difference analogues differ everywhere by less than a 
prescribed amount, depending on the required accuracy of the solution. For 
problems in rotating fluids the choice of M reduces to ensuring that there are 
at  least 3 grid points within the e-folding distance of the Ekman layer (Williams 
1967) and a similar criterion can be applied for L. However, this gives more 
points than are required in the interior region where gradients are small and a 
more useful distribution can be obtained with a variable grid spacing, which 
has been used by many workers in recent years. Unfortunately stability con- 
siderations (see later in this section) require the time step, for an explicit method, 
to be governed by the minimum grid spacing. This would make it unacceptably 
small and require the use of implicit methods, which are both involved and time 
consuming in anything other than linear problems. For the particular parametric 
range under consideration this increase in complexity outweighs the saving of 
grid points. Since this would at most be 40 yo, and in the more interesting non- 
linear case only 20 yk, the easier approach is used. 
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We use finite-difference operators Sx$, Sxx$ and CDX after Richardson (1922) 
and Lilly (1964), and (2.1)-(2.3) become 

S,Bt+r-V4(Tr) = r - y m +  V/r )  S,T~+V[S,,V+ Sr(r-18r(rV))]1ag, 

s,p + JA( @") = 2 m 2  v z  + r-lSz( V - 2 ) Z  + 1" s,, 6 + S,( r-lSr( r g ) ) p g ,  

- y = r-lSzZ$ + ST(r-lSr@), 

(2.10) 

( 2.1 1 ) 

(2.12.) 

where central time differencing is used to ensure stability and the diffusion terms 
are evaluated non-centrally a t  time (n- I )  At, again for stability. The terms 
J ,  and Ja are given by 

J4($) = S z ( p 8 T p )  - S,(pS,p), (2.13) - v 

J z ( $ )  = S r ( $ a z P ) ' -  4 ( @ 8 r  P)", (2.14) 

JD) = % J 4 ( # )  + $Jz($), (3.15) 

where the multiple averaging is required to  prevent fictional energy changes. 
For further details see Williams (1967) and Phillips (1959). 

Provided that the spatial finite-difference scheme is well chosen there are 
given criteria for ensuring stability in time. The first is the diffusive requirement 
that the time step At must be less than min (Az2, Arz)/8v, Second is the Courant- 
Friedrichs condition that no fluid particle can be advected more than a distance 
min (Az, Ar) in a time At; this criterion is most important in the boundary layers 
where the velocities, in the plane 8 = constant, are greatest. Finally, we must 
ensure that the energy of the inertial waves is not propagated a t  a speed greater 
than min (Az, Ar)/At. It is found that, provided that 

At < (3*/h) min (Ar, Az), (2.16) 

all three conditions are satisfied for the particular dimensions used. The tendency 
for central time differencing to lead to a slow splitting of variables at  adjacent 
time steps is removed by periodically averaging. 

Method of solution 

In executing the calculations, V and 6 can be directly evaluated from values at  
the previous time step. With the new values of y and the known boundary condi- 
t'ions on $) the new values of $ can be determined by the solution of Poisson's 
equation. This was achieved by a similar method to  that of Williams (1967) 
by making use of the fast Fourier transform methods of storage allocation and 
flow diagrams given by the G-AE Subcommittee on Measurement Concepts 
(Proc. I.E.E.E. vol. AU-15, 1967, pp. 45-55). From the new values of $ the 
boundary values of 5 could then be determined as described previously. 

The integration is started with no inflow and the fluid in a state of solid-body 
rotation. The inflow is then built up over 5 s and thereafter held constant.The 
slow build-up was required as the grid was too coarse to represent the vorticity 
gradient adequately on the boundary if the whole of the fluid was impulsively 
started at  t = 0. 
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Computational details 

The most practical grid spacing, from the point of view of storage requirements 
and C.P.U. time, sufficiently small adequately to represent the flow was 66 x 81 ; 
66 points in the vertical direction, when the end points are excluded, gives the 
required number for the inversion of Poisson’s equation. It also gives 4 or 5 
grid points within tjhe Ekman-layer e-folding distance (v/Q)&, and allows for 
t,he fact that the Ekman layer is expected to thin in some parametric regions. 
It is difficult to determine whet’her the grid spacing is sufficiently small for all 
parametric regions as the normal test of doubling and halving the grid spacing 
is denied us here. An increase to a 34 x 41 grid is suspect as there are then only 
about 2 grid points within the region of high shear; and we should not expect 
exact agreement with the grid with smaller spacing; it is impossible to halve this 
spacing because of storage limitations. Nevertheless a run was made with the 
larger grid spacing and changes of between 30/, and 7 yo were encountered in 
the boundary layer. 

With these parametric values the e-folding spin-up time is about 50 s (this 
will be discussed in the next section) and the model was run for about 300 s to 
get as near to a steady state as was practical. A run was also made to 400 s to 
check that a steady state had indeed been achieved. The values of the variable 
- Vr  for R = 3.05 x 10-1 were 0, 0.4487, 0.6130, 0.6666, 0.6833, 0.6887, 0.6903, 
0.6908 and 0.6910 a t  50 s intervals up to 400 s. After 300 s the decay was ex- 
ponential (to 4 significant figures), and given by 

- Vr = 0.691 I [I - 0.5095 exp ( - t/50.0)], (2.17) 

the factor 0.5095 occurring because the initial part of the decay is not exponential. 
By terminating the integration at  300 s we therefore achieve 99-8 yo of the final 
value. 

The model requires 368 K of main storage and 200 K on direct access devices, 
and was run on an IBM 360/195. 

3. The linear case ( R  G Ei)  
As mentioned in the introduction, when R < E$, we can solve (1 .  I )  and ( 1 . 2 )  

analytically by the boundary-layer technique given generally by Stewartson 
(1957) and more particularly for source-sink flows by Hide (1968). Briefly, 
Ekman layers form on the top and bottom surfaces and these transport all the 
fluid from the source to the sink. On the vertical walls, the fluid is transported to 
and from the Ekman layers by E* layers and we can formally write (away from 
the Ekman layers) 

2423-2 (a - r ) )  
h 

(2aE-t ( r  - b ) ) ]  
h 9 (3.1) . +exp vr = &E-3 [ - 1 + exp ( 

2%-h 
24E-3 (a - r )  

Ur = “[exp( 27rh h h 
(3.2) 

where curvature effects have been neglected, i.e. C = 0. These expressions satisfy 
the boundary conditions on U and V ,  but examination of the continuity equation 
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FIGURE 2 .  Comparison of Hide’s linear theory (broken lines; E = 8.00 x 
ing the Eg layers) and the numerical results (solid lines) for E = 8.00 x 10- 
and C = 6 . 6 4 ~  
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shows that W + 0 near the vertical walls and the no-slip condition for Itr is not 
satisfied. This is corrected by an E* layer which also modifies the V r  profile by 
order EQ and the Ur profile by a corresponding amount. Although the exact 
solution of this layer remains a significant unsolved analytic problem, numerically 
there are no special difficulties and we present here the solution when 

R = 3.78 x C = 6.64 x 10-3 and E = 8.00 x 

The results of this integration are shown in figure 2 with expressions (3.1) and 
( 3 . 2 )  plotted for comparison. It must be realized that these are now only approxi- 
mate solutions but the comparison between them clearly brings out the con- 
tribution of the E6 layer. Only half the profiles are given as both examples are 
symmetric about the mid-radius. 

The Ur profile shows the most change since a t  all the wall a( Ur)/iir is reduced 
from O(E-*) to a small quantity (not zero as the finite-difference scheme is not 
accurate enough). On the other hand the viscous forces in the layer are consider- 
ably stronger than those in the Ei layer (see figures 3c ,  d )  and this allows a 
steeper Ur gradient away from the wall. The combination of these effects means 
that the overall thickness is little altered but the profile is substantially changed. 
There is a corresponding change in the Vr profile but the final values are almost 
the same, the numerical approach giving an 0 - 8  yo lower value in the middle. 
(At this stage there is little indication of whether this difference is due to numerical 
error or is a real effect produced by the resolution of the E* layer.) 

While still in the small Rossby number regime we also investigate the effects 
of curvature. E and R are kept a t  the same values as before but C = 0-76 (experi- 
mental value). The results of this are given in figure 3.  Figure 3 ( u )  shows the 
Vr and Ur profiles, and these are to be compared wit.h the numerical results in 
figure 2 .  On close inspection it is noticed that compared with the case 

c = 6-64 x 10-3 

the source layer thickens and the sink layer thins (for the precise amount see 
table 1). The difference is small, about 2% a t  a maximum, but can be under- 
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FIGURE 3. The results of the integration for E = 8.00~ R = 3 . 7 8 ~  and 
C = 0.76. (a )  VT and Ur profiles. (b )  Streamlines in the plane 0 = constant for equi- 
spaced values of $: $ x lo4 = 0.55, 1.66, 2.76, 3.87, 4.97 and 6.07. (c) Balance of terms 
for the vorticity equation. ( d )  Balance of terms for the T' equation. (a ) ,  (c) and ( d )  relate 
to the mid-level of the fluid ( z  = 0 )  but are representative of all but the Ekman regions, 
wliich from ( b )  can be seen to be about 0.6 cm (3(v/Cl)&) thick. Curves in ( c )  and ( d ) :  
-, geostrophic term ; - - - , viscous term; . . . . . ., nonlinear term. 

stood if we consider the r derivatives in the viscous term in t,he equat.ions of 
motion: 

When C < I only the first term is important but as this is relaxed the curvature 
term r-laV/ar becomes negative in the source layer, causing it to thicken, and 
positive in the sink layer, with t'he opposite effect. (In both layers r - la  V/ar V/rz 
in this parametric region, although of course if C > 1 the interaction of all three 
terms will have to be considered. It is important to note that the relative size 
of these two terms is dependent only on C and not on V.)  Table I below sum- 
marizes the results of this section by giving the distances required for the various 
flows to reach 90 yo of their maximum/minimum values. 

Finally figure 3 ( b )  gives the streamlines (for C = 0.76) and figures 3 ( c )  and 
( d )  show the balance of the terms, away from the Ekman layer, in the vorticity 
and azimuthal velocity equations respectively. (The uniformity of the solution 
in the z direction is well known.) They clearly show the double structure of the 
boundary layer, the inner part being the E* layer superimposed on the weaker, 
outer Eb- layer. The corresponding values for the case C = 6.64 x 10-3 are similar 
but there is no decrease in the amplitude of the terms near the outer boundary. 
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Parametric values Source Sink 
( R  = 3 . 7 8 ~  10-4) (cm) (cm) 

E = 8.00 x 10-4  Linear theory 
without E* layer C = 0 1.64 1.64 

E = 8.00 x 
c = 6.64 x 10-3 1.47 1.47 Numerical 

results E = 8 . 0 0 ~  10-4  1 C = 0.76 1.56 1.40 

TABLE 1. Distances requircd for I'r and Ur to reach 9076 of their 
geostrophic values for various values of E arid C 

Spin-up 
We close this section with a brief note on the spin-up times of the model. Linear 
theory predicts an exponential decay which in the present case is given ae 
&[I - exp ( - t /50.0)] ,  JG being the final velocity. The spin-up of the numerical 
model can also be well approximated by an exponential curve and the best fit 
over the first 150 s for the interior region was 

V,[l-exp{-t/(50.2L- 0.3))]. (3.4) 

4. The nonlinear case (1 > R > E i )  
I n  the previous section we investigated the effects produced on flows of very 

small R by altering the curvature G. We now consider flows with larger R in 
which inertial forces become increasingly important. To isolate these effects E 
and C are left fixed a t  8.00 x and 0-76 respectively and we alter the inflow 
rate Q .  Initially there is only a change in the scale of the velocities and it is not 
until the Rossby number becomes O( 10V) that any noticeable effects occur. 
To investigate these a value R = 3.71 x 10V is chosen, corresponding to an inflow 
100 times that used in 3 3. Figures 4 (a) and ( b )  show the results of the integration; 
for comparison see figures 3 ( c )  and (d ) .  The vertical boundary layers, previously 
involving a balance only of viscous and geostrophic terms, are seen to be modified 
and in the resulting layer there is a balance between all three terms. Why the 
effects are fist observed in the inner part of the vertical boundary layer becomes 
apparent if we consider (2.1). Inertial effects are confined mainly to the Jacobian 
terms, and these are significant, compared with geostrophic terms, in the region 
of largest aV/ar, that is, t,he region of highest radial shear. Since only small 
changes are produced in the boundary-layer thicknesses, these have been shown 
in table 2 but figures corresponding to figures 3 (a) and ( b )  have been omitted. 

As the inflow rate is further increased the inertial forces increase and their 
influence spreads across the boundary layers. It is of interest to observe the 
different way in which the terms adjust to maintain the balance of the equations. 
On the source wall the geostrophic and inertial terms balance to almost conserve 
vorticity whilst on the sink all three remain of comparable magnitude. To study 
this case in detail a Rossby number of 3.05 x 10-1 is taken, corresponding to 10 
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FIGURE 4. The results of the integration for E = 8 . 0 0 ~  lo-*, R = 3.79 x and 
C = 0.76. (a )  Balance of terms for the vorticity equation. ( b )  Balance of terms for the 
I' equation. Figures corresponding to figures 3(a) and ( b )  are omitted as, apart from 
scale, the profiles and streamlines are similar. Notation for curves as in figures 3(c) and ( d ) .  
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C = 0.76. (a )  T7? and U r  profiles. ( b )  Streamlines in the plane 6 = constant for equi- 
spaced values of @: $ x  10 = 0.55, 1.66, 2.76, 3.87, 4.97 and 6.07. (c) Balance of terms 
for the vorticity equation. (d )  Balance of terms for the V equation. (a ) ,  (c) and ( d )  relate 
t o  the mid-level of the fluid ( z  = 0) but are representative of all but the Ekman regions, 
which from ( b )  can be seen to be very little thicker than in the linear case (figure 3).  
Notation for curves in ( c )  and ( d )  as in figures 3(c) and (d).  

times the inflow of the previous run. The results of this integration are shown 
in figure 5. Figures 5(c) and ( d )  are plotted a t  the same value of z as figures 
3 ( c )  and ( d ) ,  but this is not crucial for the comparison since even in this para- 
met,ric region the solution departs only slightly from uniformity in the z direction. 

Comparison of figures 3(a )  and 5 ( a )  shows the expected thickening of t,he 
source layer and thinning of the sink layer, but of special interest is the different 
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Rossby number Source distance (cm) Sink distance (cm) 
7 4  f - - h - 7  

R T'r Ur T =r Ur 

3.78 x 10-4 1.56 1.56 1.40 1.40 
3.71 x 1.73 1.65 1.39 1.39 
3.05 x 10-1 3.18 2.35 0.82 1.17 

TABLE 2. Summary of the distances required for T'r and Ur to achieve 
90% of their interior (geostrophic) values 

Inner 

- 2.0 

Outer 
wall 

FIGURE G .  Change of Ekmim-layer suction with radius as shown by Wr (for bottom 
boundary). The values are calculated a t  the edge of the Ekman layer at z = -2.0. 
Unlike the numerical solution (dashed line), Hide's linear theoretical solution (solid line) 
does not fulfil the no-slip condition on the walls, owing t.0 the neglect of the inner boundary 
layer. 

distance that Ur and Vr require to reach 90% of their interior values. This 
difference was suggested by Bennetts & Hocking (1973) and was one of the 
major differences between the results of that paper and Hide (1968). A summary 
of these boundary-layer thicknesses is given in table 2. 

In  the source layer we can see from figures 5 (a )  and 6 that the vertical velocity 
W and a( Vr)/ar  are still coupled, as in linear theory, indicating that the presence 
of inertial terms does not change the fundamental role of the Ekman layer. 
However, it will be noticed that the coupling between Vr and Ur is reduced; 
they no longer reach their geostrophic values in the same distance. This de- 
coupling can also be seen from figures 5 (c) and (d) ,  where Ur is matched to the 
interior in an inner layer in which the inertial and geostrophic terms are balanced, 
the viscous terms remaining relatively small. The final match of Trr then takes 
place in an outer viscous-geostrophic layer. Both these layers are controlled by 
the Ekman layers as can be seen from figure 6, W being non-zero in each case. 
The magnitudes of the terms in the source layer (figure 5c) are very much less 
than those in the sink layer, indicating that near the source the vorticity is al- 
most conserved. This is also demonstrated in figure 5 ( d ) ,  where the inertial- 
geostrophic balance of the inner layer is nearly 

[see (2. I)]. This prevents centrifugal instability. 
2Q+ v/r = 0 (4.1) 
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'0 

FIGURE 7. Comparison of the various results for E = 8 . 0 0 ~  R = 2.38 x lO-l, 
c = 6 . 6 4 ~  10-3. ~ , numerical results. Theoretical approaches, which neglect both 
curvature effects and the inner. layer: Bannetts & Hocking (1973) ; - - -, Hide (1968). 

Turning our attention to the sink layer we again see a double structure in the 
boundary layer. However, because fluid is being forced onto this boundary its 
angular momentum must be increased. Since no purely inertial-geostrophic 
layer is capable of this increase, the layer thins to allow the viscous terms to 
become sufficiently large to balance the other two. Thus there is a change in 
character from the linear case in that the main balance is between viscous and 
inertial terms as opposed to viscous and geostrophic terms. 

It is becoming noticeable, especially on the extreme left of figures 5 (c )  and 6 
and on the graph of the streamlines, that a region is developing on the source 
boundary in which the fluid does not appear to feel the rotational constraints. 
The inflow velocity is sufficiently large to carry the fluid a measurable distance 
into the container in the one or two revolutions required for the Ekman layers 
to form on the top and bottom boundaries. In  an analytic treatment this region 
could be represented as a quasi-time-dependent problem with the time co- 
ordinate replaced by ( r -a ) /U .  However, from the numerical solution it is 
difficult to  resolve the region with sufficient accuracy to confirm or disprove this 
hypothesis. 

To compare the present approach with previous theories which neglect curva- 
ture terms, C is set equal to 6-64 x 10-3 and E and R are chosen as 8.00 x 10-4 
and 2.38 x respectively. The results are shown in figure 7. The solution of 
Hide (1968) gives reasonable agreement for the Vr profile but it is inherent in his 
original assumptions that the e-folding distances for U r  and Vr are the same. 
Consequently his Ur profile is poor. Bennetts & Hocking (1973) give slightly 



702 

- 8.0 

- ri 

I 

N 

-40  
V 

x 
+- 

- 

D. A .  Bennetts and W .  D. N .  Jackson 

5-06 11.70 

v (cin) 

FIGURE 8. Comparison of the numerical and experimental results for parametric values 
E = 8.00~ 10-4, R = 3.05 x 10-1 and C = 0.76. The experimental results are plotted 
with standard error bars. 

Numerical Greenspan & Weinbaum Wedemeyer 

Rossby number = 3.72 x 

( 1 - e-1) vo 47.0 t 0.5 s 47.8 s 46.8 s 
(1  - e-2) V, 92.0 If: 0.5 s 95.1 s 96.4 s 
(1  - e-3) Vo 140.0 0.5 s 142.3 s 146.2 s 

Rossby number = 3.05 x 10-1 

(1 -cl) Vo 47.0 +_ 1.0 s 48.0 s 38-2 s 
(1 - e-2) Vo 84.0+ 1.0 s 90.5 s 84.1 s 
(1-e-3) r; 126.0 2 1-0 s 131.0 s 132.5 s 

TABLE 3. The times taken for the fluid in the centre of the container to reach (1 -e-l)Vo, 
(1-e-2)Vo and ( 1 - c 3 ) V 0 ,  63.2, 86.5 and 95.0% of the final velocity, as given by the 
numerical model, Greenspan & Weinbaum (1965) and Wedemeyer (1964) 

better agreement, especially for the Ur profile, and predict the different e- 
folding distances of Vr and Ur. Nevertheless, these solutions fail near the 
boundaries because both assume that the inner layer is infinitesimally thin, a 
fact that is not possible to simulate computationally. 

Finally, we make the comparison in the nonlinear regime between the numerical 
and experimental results. The parameters used are E = 8.00 x 10-4, C = 0.76 
and R = 3-05 x IO-l, and the Vr profile is plotted in figure 8. The agreement 
obtained, combined with the fact that we are using the full Navier-Stokes 
equations, gives us confidence in the predicted secondary flow. 
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Spin-up 

In  the previous section we noted agreement between the e-folding times of the 
model and theoretical predictions. As the Rossby number is increased there is 
a decrease in the e-folding times as shown in table 3 (5 is the final value of V a t  
the mid-radius). 

The theories of Wedemeyer (1964) and Greenspan & Weinbaum (1965) have 
been modified to account for the inflow. Since this has involved estimating the 
velocity fields after a time O((2Q)-1 s) when the Ekman layers have formed, 
some differences in the values in the above table would be expected. Further- 
more, it should be noted that for the numerical results the inflow was built up 
over 5 s whereas the theories assume an impulsive start. 

5. The experimental measurements 
The experimental measurements were made in an apparatus similar to that 

used by Hide (1968). This consisted of an annular region bounded a t  the top 
and bottom by flat acrylic (Perspex) plates and a t  the side by porous walls. It 
was desired to obtain measurements, particularly a t  higher Rossby numbers, 
which were more accurate and also more detailed in the side-mall layers hhan 
those previously available, and the azimuthal velocity component was selected 
for study since this velocity, a t  tjhe mid-depth, was much larger than the radial 
or vertical velocities. 

The rotating tank was made from an acrylic cylinder, whose ends were sealed 
by flat acrylic disks. Two concentric porous cylinders were placed inside this 
cylinder, forming an annular region through which fluid could be passed radially. 
These cylinders were made of sintered bronze (pore size 25 ,urn) and no noticeable 
'jet effect', such as was noted by Hide (1968) when using a perforated source, 
was observed. They were carefully sealed to the acrylic lid and base of the 
apparatus to prevent flow around their edges, and their uniformity was checked 
by examining the radial flow of liquid while the tank was stationary. The size 
of the annular region so formed was of inside radius 5-06 0.02 cm, outside 
radius 11.78 & 0-02 cm and depth 4.98 f 0.03 cm. 

The tank was mounted on a rotating table with adjustable screws, which 
allowed the axis of the porous cylinders and t'he turntable to be aligned angu- 
larly to within ~f: 2 x 10-3 rad and radially to within & 0.03 cni. The turntable 
was driven by a synchronous induction motor, through a continuously variable 
transmission and a flat inelastic drive belt. The rotation period was measured 
by an electronic timer, triggered by a photocell, and was constant to within 
better than 0.5 yo over the length of a run. 

The liquid used for these experiments was water, to which was added 0.1 %, 
by volume, of fresh milk to improve its light-scattering properties. This con- 
centration did not appreciably affect the viscosity of the water, which was held 
constant at 0.0100 & 0.004 cm2 s-1 by controlling its temperature. The water 
was supplied to the inner porous cylinder from a constant-head tank, passing 
through a needle valve and then onto the turntable through a fluid slip-ring. 
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After passing through the working region and the outer porous eylinder, the 
fluid flowed to waste over a constant-head outlet where the flow rate was 
measured to an accuracy of 0.5 yo by timing the collection of a measured volume. 

I n  order to obtain velocity measurements of higher accuracy and wit'h less 
disturbance to the flow, the method of photographically timing the progress of 
dye markers, used in previous experiments, was discarded in favour of a laser- 
Doppler velocimeter system. These systems have been exteneively discussed in 
the literature; see, for example, Durst, Melling & Whitelaw (1972) for a general 
review. In  our case the whole system was required to  rotate on the turntable 
above the working region and this dictated a unit which was compact, fairly 
light and relatively insensitive to vibration. Two parallel laser beams were 
produced by splitting the beam from a 1.5 mFV helium-neon laser and these 
were focused to cross and form interference fringes in a measurement region of 
approximate size 0.02 x 0.02 x 0.30 cm. Light scattered forward by particles, of 
ttypical size 1 pm, passing through the fringes was reflected back through the 
focusing lens and collected on a photodiode, which produced a voltage whose 
mean frequency was proportional to the azimuthal velocity component of the 
fluid. All the optical components, except a plane mirror placed beneath the 
working region, were mounted in a rigid box which could move along a horizontal 
track. By turning a precision screw the intersection point of the beams could be 
moved radially through the working region and the measurement position deter- 
mined to  an accuracy of * 0.01 cm. The signal from the photodiode was passed 
through an amplifier, a narrow-band filter and a squaring circuit before being 
measured by a frequency meter. Because of drop-outs of the signal, caused by 
the random passage of particles through the fringes, the whole system was 
calibrated by taking measurements in a small tank of fluid rotating as a solid 
body, The accuracy of measurements made with this system was 1 % a t  8 cm s-l, 
falling to 3 yo a t  0.3 cm s-l. 

Allthemeasurements takenforthispaperweremadeataflowrateof 8 . 8 5 ~ n ~ ~ s - l  
and at a rotation rate of 0.25 rad s-l. The position of t,he intersection point of 
the laser beams was adjusted to be a t  the mid-depth of the working region and 
velocity measurements were made radially between the source and the sink. 
The mean results of several traverses are shown in figure 8 together with the 
r.m.s. deviations from the mean. 

The authors would like to express their thanks to Dr €3. Hide for suggesting 
this problem and for his continuing help, to Mr P. Brierley for constructing the 
turntable and to Mr R. O'Connor for his help in making the measurements. 
They would also like to thank the referees for their helpful comments. This paper 
is published with the permission of the Director General of the Meterological 
Office. 
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